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Green function Monte Carlo with stochastic reconfiguration: An effective remedy
for the sign problem
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~Received 11 February 1999; revised manuscript received 10 June 1999!

A recent technique, proposed to alleviate the ‘‘sign problem disease,’’ is discussed in detail. As is well
known, the ground state of a given HamiltonianH can be obtained by applying the propagatore2Ht to a trial
wave functioncT and sampling statistically the statect5e2HtcT for large imaginary timet. However, the
sign problem may appear in the simulation and such statistical propagation would be practically impossible
without employing some approximation such as the ‘‘fixed node’’~FN! one. The present method allows the
improvement of the FN dynamics with a systematic correction scheme. This is possible by the simple require-
ment that, after a short imaginary time propagation via the FN Hamiltonian, a numberp of correlation
functions can be further constrained to beexactby small perturbations of the FN state, which is free from the
sign problem. By iterating this procedure, the Monte Carlo average sign, which is almost zero when there is a
sign problem, remains stable and finite even for larget. The proposed algorithm is tested against exact
diagonalization data available on finite lattices. It is also shown, in some test cases, that the dependence of the
results upon the few parameters entering the stochastic technique can be very easily controlled, unless for
exceptional cases.
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I. INTRODUCTION

In the last few years, enormous progress in computatio
techniques has been accompanied by better and better
formances of modern computers. All these developme
have certainly contributed to the ‘‘feeling’’ that the man
body problem of solving a strongly correlated Hamiltonia
with many electrons on a reasonably large system size
becoming possible with some computational effort.

The various numerical methods proposed so far in or
to find the ground state of a physically interesting Ham
tonian, can be classified into two main branches develop
from two root methods: the exact diagonalization techniq
~ED! and the variational Monte Carlo method~VMC!.

The first technique is a brute force diagonalization of
Hamiltonian matrix, which represents a prohibitive task
large systems as the linear dimension of this matrix gro
exponentially with the number of electrons and the size. T
use of spatial symmetries and the very efficient Lanc
technique have recently made possible the exact ground-
evaluation of up to;30 electrons for simple lattice Hamil
tonians like: the Heisenberg model,1 the t2J model,2 the
Hubbard model and related ones.3 However, this is far from
being enough for the determination of the physical proper
in the thermodynamic limit. Recent progress has been m
by using ED within the so called density-matrix renormaliz
tion group technique~DMRG!,4,5 which allows to obtain al-
most exact—at least in one dimension—large size grou
state properties.

The second branch of development starts from the VM
technique.6 The VMC allows one to sample statistically
variational wave functioncG(x), defined on a given basi
set whose elements$x% are represented by simpleconfigura-
tions, defined typically by the electron positions and spins.
the simplest formulation, the VMC sampling can be obtain
PRB 610163-1829/2000/61~4!/2599~14!/$15.00
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by accepting a new trial configurationxn11 from a given one
xn if a random numberj between zero and one satisfie
j,ucG(xn11)/cG(xn)u2, otherwise the trial configuration is
not accepted andxn115xn .

The iterative rule that determines a new configurat
xn11 starting from a previous onexn , and depending also on
a random number, defines a Markov chain that allows on
obtain statistical estimates of the variational expectation v
ues. This is possible even if the dimension of the Hilb
space is very large, a property representing the most im
tant advantage of the statistical methods over the ED te
nique.

From this point of view, the Green-function Monte Car
~GFMC! technique7 can be considered as a development
the VMC, because it allows to sample statistically the ex
ground state of a many body HamiltonianH, instead of being
restricted to the variational wave function. In the GFMC, t
ground state is statistically sampled by a set ofM walkers
(wi ,xi), i 51, . . . ,M , i.e., at each configurationxi is asso-
ciated a weightwi in order to represent the amplitude of th
wave function on the elementxi of the large~or even infi-
nite! Hilbert space. A Markov chain–slightly more compl
cated than the variational one–can be easily defined for
GFMC as well. As it will be shown later on, the new co
figurations and weights (wi ,xi)n11 depend only on the pre
vious weights and configurations (wi ,xi)n and M random
numbersj i . This iteration is equivalent, statistically, to
matrix-vector product

cn11~x8!5(
x

Gx8,xcn~x!, ~1!

where Gx8,x is the lattice Green function, which is simpl
related to the Hamiltonian matrix in the given basis

Gx8,x5Ldx8,x2Hx8,x , ~2!
2599 ©2000 The American Physical Society



o

er
gh
y

i
g

h
or
th

th
f
o
p

en
l-
ite

is
,’’
e

se
e

a

io
a

x
-
ion
ke
an

tic
t-
n

te
tio
ov

ns
th
r

l

er

-
hen
the
e-
e
lts,
ef-
ge

ll

o

sta-

ra-

ic
r. A

ce

a

ch-
rgy
ve
g

the
le to
e

on

2600 PRB 61SANDRO SORELLA AND LUCA CAPRIOTTI
whereL is a suitable constant, allowing the convergence
Eq. ~1! to the ground state ofH for largen. At each Markov
iteration n, the statecn(x) is sampled statistically by the
walkers, whose numberM can be large, but is typically a
negligible fraction of the total Hilbert space dimension.

In the statistical iteration process the weightswi of the
walkers increase or decrease exponentially, so that aft
few iterations most of the walkers have an irrelevant wei
w and some kind of reconfiguration becomes necessar
order to avoid large statistical errors.7 The process to elimi-
nate the irrelevant walkers from the statistical sampling
called ‘‘branching.’’ This consists for instance in duplicatin
a walker with largewi in two walkers with half the weights
wi /2 acting on the same configuration, or in dropping t
walkers with too small weights. For long–and therefore m
accurate–Markov chains, it is also necessary to control
number of walkers otherwise the simulation will exceed
maximum available memory or it will terminate for lack o
walkers. This reconfiguration of the walker population intr
duces some amount of bias. Recently, a rigorous and sim
way of working at finite number of walkers has be
proposed,8 which simplifies the GFMC technique by contro
ling and eventually eliminating the bias due to the fin
walker population.

With a slight generalization of the previous technique it
also possible to alleviate the infamous ‘‘sign problem
which occurs when the matrix elements of the lattice Gre
function Gx8,x are not always positive definite. In this ca
the iteration~1! can still have a statistical meaning at th
price of having walkers with weightswi , which are no longer
restricted to be positive. It then happens that the aver
weight sign̂ s&n5^( i 51

M wi&n /^( i 51
M uwi u&n at a Markov itera-

tion n is exponentially decreasing withn, implying a dra-
matic decrease of the signal-to-noise ratio for all correlat
functions. A remarkable improvement of the GFMC on
lattice was realized when the fixed node~FN! approximation,
largely employed for fermions in the continuum, was e
tended to lattice Hamiltonians.9 In this case, the ‘‘danger
ous’’ negative off-diagonal elements of the Green funct
are neglected, and stable simulations with positive wal
weightswi can be performed at the price of having only
approximate solution of the ground-state wave function.

The Green-function Monte Carlo with Stochas
Reconfiguration10 ~GFMCSR! represents a successful a
tempt of improving over the FN, with a stable simulatio
without any sign problem instability. In this scheme, bet
and better approximations of the ground-state correla
functions may be obtained by performing controlled Mark
chain simulations with average walker sign^s&n very close
to 1 for each iterationn. For the sake of simplicity we will
restrict the forthcoming derivation to lattice Hamiltonia
but the basic ideas can be straightforwardly extended to
continuum case. This method is based upon the simple
quirement that after a few iterations of Eq.~1! via the ap-
proximate FN dynamics, a numberp of correlation functions
can be further constrained to beexactby appropriate smal
perturbations of the propagated FN statecn

e f f , which is free
from the sign problem. By iterating this procedure the av
age sign remains stable even for largen and, in this limit, the
method has the important property of being in principleexact
if all possible correlation functions are included.
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In the first five sections of this paper we will briefly re
view the basic steps of the GFMC for the general case w
the sign problem affects the practical implementation of
algorithm. In Sec. VI, we will introduce the Stochastic R
configuration~SR! technique. In the remaining sections w
will present the details of the algorithm and some test resu
useful to understand the practical implementation, for an
ficient and controlled improvement of the FN, even for lar
system sizes.

II. THE GFMC TECHNIQUE

From a general point of view, the ground statec0 of a
lattice HamiltonianH can be obtained by iterating the we
known power method Eqs.~1! and ~2! so thatcn→c0 for
large n, provided the initial statecT at the first iteration of
Eq. ~1! (cn5cT for n51) is a trial state not orthogonal t
the ground statec0.

A stochastic approach is possible if one can sample
tistically the matrix-vector iterations~1!. This is particularly
important since for large systems, only a few power ite
tions, at most, can be applied exactly.

Following Ref. 8, it is first convenient to define the bas
element of the stochastic approach; the so called walke
walker is determined by an indexx corresponding to a given
elementux& of the chosen basis and a weightw. Within the
stochastic approach the walker ‘‘walks’’ in the Hilbert spa
of the matrixH and assumes a configurationw,x according
to a given probability distributionP(w,x). The task of the
GFMC approach is to define a Markov chain, yielding
probability distributionPn(w,x) for the walker, which deter-
mines the iterated wave functioncn :

cn~x!5^xucn&5E dw wPn~w,x!. ~3!

III. IMPORTANCE SAMPLING

One of the most important advantages of the GFMC te
nique is the possibility of reducing the variance of the ene
by exploiting some information on the ground-state wa
function, known a priori on physical grounds. Followin
Ceperley and Kalos,11 one can consider in the iteration~1!
not the original matrixG, but the slightly more involved
nonsymmetric one

Ḡx8,x5cG~x8!Gx8,x /cG~x!, ~4!

wherecG is the so calledguiding wave function, that has to
be as simple as possible to be efficiently implemented in
calculation of the matrix elements, and as close as possib
the ground state ofH. Here and in the following, we assum
that cG(x) is always non-vanishing for allx. It is obvious
thatḠ, though nonsymmetric, has the same spectrum ofG as
for any eigenvectorck(x) of G with energy L2Ek ,
cG(x)ck(x) is a right eigenvector ofḠ with the same eigen-
value.

As shown later on, by sampling statistically the iterati
~1! with Ḡ instead ofG, the walkers (w,x) will be distrib-
uted for largen according toc0(x)cG(x), namely cn(x)
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}c0(x)cG(x) in Eq. ~3!. In order to evaluate the ground-sta
energy, it is then enough to average the so called local
ergy,

Ex5
^cGuHux&

^cGux&
5(

x8
cG~x8!Hx8,x /cG~x!, ~5!

over the statistically sampled walkers.
Analogously, after the transformation~4!, all mixed aver-

age correlation functions

^cGuOkuc0&

^cGuc0&
~6!

are easily accessible by GFMC for arbitrary linear operat
Ok. The local estimator corresponding to Eq.~6! is, analo-
gously to Eq.~5!, given by

Ox
k5(

x8
Ōx8,x

k , ~7!

where

Ōx8,x
k

5cG~x8!Ox8,x
k /cG~x!, ~8!

are the operator matrix elements transformed accordin
the guiding wave function. Summarizing, in order to imp
ment the ‘‘importance sampling’’ strategy it is sufficient
replace all the original matricesOx8,x

k andG with the trans-

formed nonsymmetric matricesŌk ~8! andḠ ~4!. In the fol-
lowing, for simplicity of notations, we put a bar over th
symbols corresponding to all the transformed matrices~4!
and~8!. We finally remark that, since the convergence of
power method~1! is not limited to symmetric matrices, th
GFMC method can be more generally considered an effic
tool to find the maximum eigenvalue and eigenvector o
generic matrixḠ.

IV. SINGLE WALKER FORMULATION

In general the distributionPn(w,x) in Eq. ~3! is sampled
by a finite numberM of walkers. Let us first consider th
simpler caseM51. In order to define a statistical impleme
tation of the matrix multiplication~1!, the standard approac
is to determine first the nonvanishing Green function ma
elementsḠx8,x for all $x8%. These matrix elements can b
generally written in terms of three factors

Ḡx8,x5sx8,xpx8,xbx , ~9!

wherebx is a positive normalization factor,sx8,x takes into
account the sign of the matrix element andpx8,x is a stochas-
tic matrix. All these terms will be defined explicitly below

The basic step of the GFMC method on a lattice is
define properly the matrixpx8,x , because it represents th
term in the decomposition~9! allowing to select statistically
only oneconfiguration among all the possible$x8% connected
to x. Therefore,px8,x has to represent a probability and
restricted to be~i! normalized(x8px8,x51 and~ii ! with all
positive matrix elementspx8,x>0. This is just the definition
of a stochastic matrix.12 Since the matrix elements ofḠ are
not restricted to be positive~sign problem! px8,x is more
n-

s

to

e

nt
a

x

clearly defined in terms of an appropriate Green funct
Ḡe f f with all positive matrix elements. Even if the latte
restriction may appear rather strong, it is however poss
that for largen the approximate propagation of the statecn

e f f

by the Green functionḠe f f is not far, in a sense to be spec
fied below, from the true propagation ofcn by the exact
Green functionḠ in Eq. ~1!. Ḡx8,x

e f f needs not to be normal
ized, as its normalization can be included in the definition
the positive constant

bx5(
x8

Ḡx8,x
e f f ~10!

so that

Ḡx8,x
e f f

5px8,xbx . ~11!

Here, we follow a recent development of the FN meth
on a lattice,13 and we choose forḠe f f the FN Green function
~with importance sampling!:

Ḡx8,x
e f f

5Ldx8,x2H̄x8,x
e f f . ~12!

The constant shiftL has to be large enough that all th
diagonal elements ofḠe f f are strictly positive. This is pos
sible in general for the diagonal elements. IfHe f f is appro-
priately defined,13 one can prove that its ground stateis a
variational state of H with an energy better than the guidi
wave function one. Here, we slightly modify this approac
which neglects all the matrix elements ofH crossing the
nodes of the guiding wave function, namely the ones w
H̄x8,x.0, by defining a matrix elementH̄x8,x

e f f
,0 even when

H̄x8,x.0 ~see below!. The generalization of the above ‘‘FN
theorem’’ to this case is straightforward and is reported
the Appendix A. Our experience has shown that it is e
tremely important to cross the nodes on a lattice within
above variational scheme. For instance, the simplest ch
for a positiveḠe f f, i.e., to take the absolute value of th
exact Green function,Gx8,x

e f f
5uGx8,xu, leads to much larger

statistical errors and much less accurate results, espec
for fermion systems.

More in detail, the definition of theH̄e f f we use is as
follows. The off-diagonal matrix elements are given by

H̄x8,x
e f f

5H H̄x8,x if H̄x8,x<0

2gH̄x8,x if H̄x8,x.0,
~13!

whereg is positive constant, and the diagonal ones by

Hx,x
e f f5Hx,x1~11g!Vsf~x!, ~14!

where thesign-flip contribution is13

Vsf~x!5 (
$H̄x8,x.0, x8Þx%

H̄x8,x . ~15!

Notice that there is no difference between the diagonal
ments of the HamiltonianHe f f ~H! and the ones of the trans
formed matrixH̄e f f (H̄), as defined by Eq.~8!.
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With these definitions, Eq.~9! for Ḡ holds if the factor
sx8,x is given by

sx8,x55
1 if Ḡx8,x>0

21/g if Ḡx8,x,0

L2Hx,x

L2Hx,x
e f f

if x85x.

~16!

The appropriate stochastic process~Markov iteration!
relative to the HamiltonianH can be defined by the follow
ing three steps, where we simply allow the weightw of the
walker to become also negative

~1! Given the walker (w,x), change the weightw by res-
caling it with bx as defined in Eq.~10!:

w85bxw.

~2! Generate at random a new configurationx8 according
to the stochastic matrixpx8,x .

~3! Multiply the new weightw8 by the sign factorsx8,x as
given by Eq.~16!:

w8→w8sx8,x . ~17!

Without the step~3!, one is actually sampling the Hami
tonianHe f f, which we expect~or assume! to have a ground
state close to the one ofH, for suitably chosen guiding wav
function. During the Markov iteration~17! it is straightfor-
ward therefore to update both the weightw associated to the
true Hamiltonian, and the onewe f f associated to the approx
mate FN oneHe f f. From now on therefore the walker will b
characterized by the triad

~w,we f f,x!.

The previous algorithm~17! allows us to define the evo
lution of the probability density for having a walker wit
weightsw, andwe f f (.0), in the configurationx, namely:

Pn11~w8,we f f 8,x8!5(
x

px8,x

bx
2usx8,xu

PnS w8

bxsx8,x

,
we f f 8

bx
,xD .

~18!

The first moments of the distributionP over w and we f f

give the statecn(x) propagated with the exact Green fun
tion Ḡ and the statecn

e f f(x) propagated with the FN Gree

function Ḡe f f, respectively. Indeed, by defining the prop
gated wave functions as

cn~x!5E dwe f fE dw w Pn~w,we f f,x!, ~19!

cn
e f f~x!5E dwe f fE dw we f f Pn~w,we f f,x!, ~20!

one can readily verify, using Eq.~18!, that cn andcn
e f f sat-

isfy the iteration condition~1! with Ḡ andḠe f f, respectively.
At this stage the algorithm is exact, and the Markov ite

tion allows us to sample the ground state ofH ~with sign
problem! and He f f ~without sign problem! within statistical
-

errors: unfortunately these errors may be very large, and
creasing with the iteration numbern, especially when there is
sign problem.

The configurationsxn that are generated in the Marko
process are distributed, after many iterations, according
the maximum right eigenstate of the matrixpx8,x ~as only the
matrix p is effective in the matrix product~1!, if we neglect
the weights of the walkers!. This state is in general differen
from the statecG(x)c0(x) we are interested in. So afte
many iterations the sampled configurationsxn are distributed
according to an approximate state, but we can consider
state as a trial statecT for the initial iteration (n51) in the
power method~1!. At any Markov iterationn, we can com-
pute the weight of the walker assuming thatL iterations be-
fore its value was simplyw51. In this way, it is simple to
compute the resulting weight of the walker afterL power
Green functionḠ applications

Gn
L5)

j 51

L

bxn2 j
sxn2 j 11 ,xn2 j

. ~21!

Therefore, for instance, in order to compute the energy w
a single Markov chain of many iterations, the followin
quantity is usually sampled

E05
(nExn

Gn
L

(nGn
L

, ~22!

with L fixed.12,8

This would conclude the GFMC scheme, if averages o
the weight variableGn

L were possible in a stable and co
trolled manner. However, there are two important drawba
for the single walker formulation. The first one arises b
cause the weightGn

L of the walker grows exponentially with
L –simply as a result of theL independent products in Eq
~21!–and can assume very large values, implying diverg
variances in the above averages. This problem has a
well-established solution by generalizing the GFMC to ma
walkers and introducing a scheme~branching! that enables to
carry out walkers with reasonable values of the weights,
dropping the irrelevant walkers with small weights and sp
ting the ones with large weights. Recently a simple formu
tion of this scheme was defined at fixed number of walke8

in a way that allows to control efficiently the residual bi
related to the finite walker population. The second drawb
is the more difficult one, and is due to the sign problem. T
average sign^sL&5(nGn

L/(nuGn
Lu vanishes exponentially

with L. In the formulation of Ref. 8 this problem looks quit
similar to the first simple one. As we will see later on, som
kind of remedy can be defined by a simple generalization
the SR, which is exact in the case with no sign problem.

V. CARRYING MANY CONFIGURATIONS
SIMULTANEOUSLY

GivenM walkers we denote the corresponding configu
tions and weights with two vectors (w,x), where each vector
component (wi ,wi

e f f ,xi) i 51, . . . ,M , corresponds to the
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i th walker. Following Ref. 8, it is easy to generalize Eq.~18!
to many walkers by the corresponding probabilityPn(w,x)
of having theM walkers with weights and configuration
(w,x) at the iterationn. Similarly to the single walker for-
mulation, the propagated wave functionscn(x) andcn

e f f(x)

with the true Green functionḠ and the approximate oneḠe f f

read

cn~x!5E @dw#(
x

( jwjdx,xj

M
Pn~w,x!

~23!

cn
e f f~x!5E @dw#(

x

( jwj
e f fdx,xj

M
Pn~w,x!,

where the symbol*@dw# indicates the 2M multidimensional
integral over the (wi ,wi

e f f) variablesi 51, . . . ,M ranging
from 2` to ` and from 0 tò , respectively. Equation~23!
shows that the propagated quantum-mechanical statescn and
cn

e f f , which are sampled statistically, do not uniquely det
mine the walker probability functionPn(w,x). In particular,
it is perfectly possible to define a statistical process, the
which changes the probability distributionPn without chang-
ing theexact information content, i.e.,cn andcn

e f f . In this
way a linear transformation ofPn , described by a simple
kernelX(w8,x8;w,x), will be explicitly given

Pn8~w8,x8!5E @dw#(
x

X~w8,x8;w,x!Pn~w,x!. ~24!

When there is no sign problem (we f f5w) it is possible to
define the kernelX ~Ref. 8! by requiring that the weightswj8
are all equal to( jwj /M after the SR. In this case, the alg
rithm is exact, and allows to perform stable simulations
applying the SR each fewkp iterations. Furthermore, by in
creasing the number of walkersM, the exponential growth in
the variance of the weightswj can always be reduced an
systematically controlled. In fact, for large enoughM, it is
possible to work withL sufficiently large (L}M ) obtaining
results already converged in the power method iteration~1!,
and with small error bars.

VI. STOCHASTIC RECONFIGURATION,
STABILIZATION OF THE SIGN PROBLEM

In order to avoid the sign problem instability, at least
an approximate way, we can follow the previous scheme
using the following kernelX that defines the SR~24!

X~w8,x8;w,x!5)
i 51

M S ( j upxj
udx

i8 ,xj

(
j

upxj
u D

3dS wi82b21
( jwj

M
sgnpx

i8D
3d~wi

e f f82uwi8u!, ~25!

where the coefficientspxj
will be defined in the following,

and b5( j pxj
/( j upxj

u. The kernel~25! has a particularly

simple form since the outcoming variablesxj8 and wj8 are
-

,

y

y

completely independent for differentj values. In particular, it
is possible to integrate easily each of theM factors of the

kernel in the variableswj8 , wj
e f f 8 and to sum over the con

figurationsxj8 , the result being simply one, as it is require
by the normalization condition of the probability densityP8
in Eq. ~24!. In general, the SR defines new statescn8(x) and
cn8

e f f(x) from the given statescn(x) and cn
e f f(x) at the

given Markov iteration n. The new statescn8(x) and
cn8

e f f(x) are simply obtained by replacingP with P8 in Eq.
~23!. The SR will be exact if it does not affect the evolutio
of the statecn(x) during the Markov chain, namely when
ever

cn8~x!5cn~x!. ~26!

In the SR, the new configurationsxi8 are taken randomly
among the old ones$xj%, according to the probability
upxi

u/( j upxj
u, defined below in terms of the given weigh

$wj%, $wj
e f f% and configurations$xj%. Moreover, the weights

wi8 are changed consistently to Eq.~25! by wi8
5b21 ( jwj /Msgnpx

i8
and the FN weights, restricted to b

positive, are defined by taking their absolute valueswi
e f f8

5uwi8u.
The coefficientb5( j pxj

/( j upxj
u guarantees that the nor

malization is preserved by the SR, namely(xcn8(x)
5(xcn(x). This coefficientb represents also the expecte
average walker sign̂s&85( jwj8/( j uwj8u after the reconfigu-
ration. It is supposed to be much higher than the average
before the reconfiguration̂s&5( jwj /( j uwj u, so that a
stable simulation with approximately constant average s
^s&8 can be obtained by iteratively applying the SR eve
few kp steps of the power method iteration~1!.

In the actual implementation of this algorithm~see Sec.
VII for the details! the weights are reset to unit values aft

the SR:wi85sgnpx
i8

andwi
e f f851, whereas only the overal

constantb21( jwj /M , common to all the different walkers
is stored in a sequential file. As in the single walker form
lation we can assume that, at any given iterationn, L itera-
tions before the trial statecT is given by the equilibrium
distribution of walkers with unit weightswj5sgn pxj

.
Therefore, in order to obtain the weights predicted by the
~25! for L power method iterations starting fromcT it is
enough to multiply the previousL/kp saved factorsf n
5b21( jwj /M . This yields a natural extension of the facto
Gn

L in Eq. ~21! to the many walker case

Gn
L5)

k51

L/kp

f n2k3kp
~27!

and the corresponding mixed average correlation functi
are obtained by averaging the local estimators over all
iterationsn just before the SR~i.e., n is a multiple ofkp)

^Ok&5
(nGn

L( jwjOxj

k

(nGn
L( jwj

, ~28!

where, in the above equation, the weightswj and the local
estimatorsOxj

k are evaluated only before the SR.
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A. Choice of the coefficientspxj

The only quantity which we still need to define proper
the whole algorithm, in the kernel of Eq.~25! are the coef-
ficients pxj

which have notto be assumed positive. Thes

coefficients may depend on all the weightswj , the configu-
rationsxj and the FN weightswj

e f f .
The choice pxj

5wj is exact in the sense thatcn8(x)

5cn(x), and coincides with the one for the case witho
sign problem.8 However, this choice is obviously not conve
nient, because this reconfiguration will not improve the si
which will decay exponentially in the same way.

Instead, in the case with sign problem, we can parame
ize the coefficientspxj

by assuming they are close enough

the positive definite weights$wj
e f f%, the ones obtained with

the FN Green functionGe f f. The reason for this choice i
that, though the weightswj

e f f may be occasionally very dif
ferent from the exact weightswj –namely their sign can be
wrong–they sample a statecn

e f f(x), which is supposed to be
quite close to the exact propagated statecn(x). This condi-
tion is clearly verified for an appropriate choice of the gu
ing wave functioncG , making the FN accurate. Then, w
assume that small perturbations over the statecn

e f f(x) may
lead to fulfill the equality~26! with an arbitrarily small error.
This error will affect the equilibrium walker distributionPn
for large n, but there will be no problem if this error~i! is
small and~ii ! can be reduced within the desired accuracy

In the simplest and most practical formulation we requ
that only the average energy before and after the SR coin

(
x8,x

H̄x8,xcn~x!5(
x8,x

H̄x8,xcn8~x! ~29!

@the denominators in the mixed averages~6! are already
equal by definition, as(xcn(x)5(xcn8(x) for the chosenb
in Eq. ~25!#. Then, we define

pxj
5wj

e f f@11a~Exj
2Ēe f f!#

and

Ēe f f5
( jwj

e f fExj

( jwj
e f f

~30!

Ē5
( jwjExj

( jwj
,

whereExj
is the local energy~5! associated to the configu

ration xj . Thus, Ē represents the estimate of the avera
energy correctly sampled with the sign, whereasĒe f f is the
corresponding FN one. In order to satisfy the requirem
~29! we just determinea by

a5
Ē2Ēe f f

Ēe f f
2 2~Ēe f f!

2
, ~31!

whereĒe f f
2 5( jwj

e f fExj

2 /( jwj
e f f is the average square energ

over the positive weightswj
e f f .
t

,

r-

-

de

e

t

A simple calculation shows that with this reconfiguratio
that clearly improves the sign, the value of the energy~the
mixed average energy! remains statistically the same befor
and after the SR~see Appendices B and C!. It is clear, how-
ever, that this is not enough to guarantee convergence to
exact ground state, because fulfillment of Eq.~29! does not
imply the exact equality~26!. We can improve the definition
of the constantspxj

by including an arbitrary numberp of

parameters with,p!M ,

pxj
5wj

e f f@11a1~Oxj

1 2Ōe f f
1 !1•••1ap~Oxj

p 2Ōe f f
p !#

~32!

proportional to the fluctuationsOxj

k 2Ōe f f
k of p different op-

erators Ok with corresponding local estimatorsOxj

k

5^cGuOkuxj&/^cGuxj& (k51,•••,p), and average value
over the positive weightsŌe f f

k 5( jwj
e f fOxj

k /(wj
e f f . With the

more general form~32! for the coefficientspxj
it is possible

to fulfill that all the mixed averages for the chosenp opera-
tors have the same value before and after the SR

(
x8,x

Ōx8,x
k cn~x!5(

x8,x

Ōx8,x
k cn8~x!. ~33!

In general, the reference weightswj
e f f in Eq. ~32! may be

also different from the ones generated by the FN Green fu
tion, the only restriction is thatwj

e f f.0 for each walkerj
~see Appendix C 2!.

It can be proven that, in order to fulfill exactly the S
conditions~33!, it is sufficient that the coefficientspxj

are
chosen in a way that

( j pxj
Oxj

k

( j pxj

5
( jwjOxj

k

( jwj
, ~34!

which can be fulfilled with a solution of a simple linea
system for the unknown variablesak , for k51, . . . ,p, as
described in the Appendix C. The conditions~34! are much
simpler to handle, because they can be satisfied at a g
iteration of the Markov process. A theorem, proven in A
pendix B, guarantees indeed that the exact conditions~33!
are implied by the constraints~34! after the complete statis
tical average over the walker probability distributionPn .

B. Proof of the asymptotical convergence of the GFMCSR
to the exact result

Asymptotically, by adding more and more paramete
$a j%, we can achievec8n(x)5cn(x) strictly, since the dis-
tribution cn(x) is completely determined by its correlatio
functions. The proof of this important statement is ve
simple. Consider first the diagonal operators. All these o
erators may be written as linear combinations of the ‘‘e
ementary’’ onesO

x8,x

x0 5dx8,xdx,x0
acting on a single configu-

rationx0, plus at most some constants. If conditions~33! are
satisfied forall the elementary operatorsOx0 it immediately
follows that cn8(x0)5cn(x0) for all x0, which is the exact
SR condition~26!. Then it is simple to show that the coeffi
cients pxj

, determiningPn8 and cn8 , are invariant for any
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constant shift of the operatorsOk. Furthermore with a little
algebra it turns out that these coefficientspxj

do not change
for any arbitrary linear transformation of the chosen opera
set:Ok85(kLk8,kO

k ~with realL and detLÞ0) ~see Appen-
dix C 1!. Thus the proven convergence of the GFMCSR
obtained for any sequence of diagonal operators, that,
increasingp, becomes complete. For nondiagonal operat
Ox8,x we simply note that they assume the same mixed
erage values of the equivalent diagonal onesOx8,x

diag

5dx8,x(x8Ox8,x . Thus, the proof that GFMCSR converg
in principle to the exact solution is valid in general ev
when nondiagonal operators, such as the Hamiltonian its
are included in the conditions~33!.

VII. DETAILS OF THE ALGORITHM

In this section the flow chart of the GFMCSR algorithm
briefly sketched. As described in Appendix D, it is possib
to work without the extra constant shiftL and apply directly
e2Ht, the usual imaginary time propagator, to filter out t
ground state from the chosen trial wave functioncT .

For practical purposes, the algorithm can be divided i
three steps:~1! the Green function~GF! evolution, ~2! the
SR, and~3! the measurements of physical mixed avera
correlation functions. These three steps are iterated un
satisfactory statistical accuracy is obtained for the la
quantities.

The algorithm works with a finite numberM of walkers,
which is kept fixed. Starting from the first walker (j 51), the
basic steps of the algorithm are described below:

1. In the GF evolution, the exact propagatore2HDt and
the FN onee2He f fDt are applied statistically for a give
imaginary time intervalDt. In practice this can be done b
setting initially Dt l5Dt and repeating the following step
until Dt l.0:

~a! Given the configuration of the walker,xj , the quanti-
tiesExj

, Vsf(xj ) andHxj ,xj

e f f Eqs.~5!, ~15!, and~14! are evalu-

ated. Then the intervalDtd during which the walker is ex-
pected to perform only diagonal moves~see Appendix D! is
computed using the relationDtd5min(Dtl ,ln j/pd), wherej
is a random number between 0 and 1 andpd

5 limL→`L ln pd5Exj
2Hxj ,xj

ef f according to Eq.~D1!.

~b! Dt l is updated Dt l→Dt l2Dtd and the walker
weights (wj ,wj

e f f) are multiplied respectively by

e(2Exj
1(11g)Vs f(xj ))Dtd and e2Exj

Dtd. Then if Dt l.0 a new
configurationxj8Þxj is chosen according to the probabili
table defined only by the normalized off-diagonal matrix
ements ofpx8,xj

,

px8,xj

(
x8Þxj

px8,xj

,

and the weightwj is multiplied bysx
j8 ,xj

~16!. The GF evo-

lution then restarts from~a!. Otherwise, ifDt l50 the GF
evolution for the walkerj terminates and the algorithm pro
ceeds for the next walker starting from step~1!.
r
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2. After all the walkers (wj ,wj
e f f ,xj ) have been propa

gated for the total imaginary time intervalDt, the SR can be
applied. The mixed averagesOxj

k 5^cGuOuxj&/^cGuxj& are

computed at the end of such propagation for the chosen
of operators Ok. With these quantities bothŌe f f

k

5( jwj
e f fOxj

k /( jwj
e f f and the covariance matrixsk,k8

in Eq.

~C4! are evaluated. By using the latter quantities in the lin
system~C3!, the coefficientsak are computed and the tabl
pxj

is determined according to Eq.~C2!. At this stage the
reconfiguration procedure for the walkers can finally be p
formed, i.e., the newM configurations of the walkers ar
chosen among the old ones according to the probab
upxj

u/(kupxk
u.

~3! The mixed averages of the physical observablesOj
k

and the quantity

(kwk

M

(kupxk
u

(kpxk

,

needed for the calculation of the statistical averages,
stored. The walker weights are set towj5sgnpxj

and wj
e f f

51, and the GF evolution can continue from step~1!, start-
ing again from the first walker.

In the practical implementation of the algorithm the F
dynamic can be worked out at fixedg, whereg has to be a
non-zero number otherwise the exact GF would not
sampled@see Eqs.~13,14!#. On the other hand the FN i
more accurate forg50. A good compromise is to work with
g50.5 fixed. An alternative choice is to implement a fe
runs with different nonzerog, and to extrapolate the result
for g50, which should represent the most accurate calcu
tion. Typically, this extra effort is not necessary becau
there is a very weak dependence of the results upong. How-
ever, the extrapolation tog→0 is an interesting possibility
for the extension of the method to continuum models, sin
in this case, there is no practical way of crossing the no
with a variational FN approach~see Appendix A!.

VIII. THE LIMIT OF SMALL Dt
AND LARGE NUMBER OF WALKERS

In this section some general properties of the GFMC
technique are discussed and explicitly tested on theJ12J2
Heisenberg model

H5J1(
^ i , j &

Si•Sj1J2 (
^^ i , j &&

Si•Sj , ~35!

where Si are the s-1/2 operators sitting on the sites o
square lattice.J151 andJ250.5 are the antiferromagneti
super-exchange couplings between nearest- and next-nea
neighbor pairs of spins, respectively. For the chosen va
of the parameters of the Hamiltonian the GS of the mode
likely to have no magnetic long range order.10 In the follow-
ing we will consider finite square clusters ofN sites with
periodic boundary conditions. We use the same guid
wave function of Ref. 10 and report here some test res
useful to understand the crucial dependence of GFMCSR
the number of walkersM and the distance in imaginary tim
Dt between two consecutive SR. In fact, after the select
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of a given numberp of correlation functions in Eq.~33!, the
results depend only on the number of walkersM and the
frequency of reconfigurationDt. In the limit of large num-
ber of walkers, at fixedp, the algorithm has the importan
property that the fluctuations of the coefficientsak andŌk in
Eq. ~32! are obviously vanishing, because they depend
‘‘averages’’ of a very large number of samples of many d
ferent walkers, implying that these fluctuations are decre
ing with 1/AM . In this limit it is possible to recover an
important property of the FN:if the guiding wave function is
exact, the FN averages are also exact. In fact suppose we
begin to apply the propagatore2Ht starting att50 from the
exact sampling of the ground statec0 determined by FN
with the exact guiding wave functioncG5c0. Then at any
Markov iterationn, before the SR is applied, both the mixe
average correlation functions calculated with the FN weig
we f f (^Ok&5( jwj

e f fOxj

k /( jwj
e f f) and the weights with arbi-

trary signs w (^Ok&5( jwjOxj

k /( jwj ) sample statistically

the true quantum average^c0uOkuc0&. If, for large M, we
can neglect statistical fluctuations of these averages, the
Eq. ~34! ak50 and the SR algorithm just replace the weigh
wj ~with sign problem! with the FN weightswj

e f f , which
also samplec0 exactly if cG5c0. This means that the SR
approach does not affect this important property of the
approach, at least in the limitM→`.

Another reason to work in the limitM→` is the follow-
ing. In this limit it is not necessary to include in the S
conditions~34! operatorsOk that vanish for some symmetr
that is satisfied both by the true HamiltonianH̄ and the FN
oneH̄e f f. In fact, if the coefficientspxj

are defined in terms

of operatorsOk that conserve the above mentioned symm
tries ~e.g., translation invariance, rotation by 90° degree
the lattice, etc.! by definition Eq.~33! is satisfied for all the
remaining nonsymmetric operators, which have vanish
expectation value due to symmetry constraints~such as, e.g.
an operator that changes sign for a rotation operation wh
is a symmetry ofH̄ andH̄e f f). In this case, both sides of Eq
~33! are zero by such symmetry constraints. Moreover,
M→` the statistical fluctuations are negligible and for t
same reason Eq.~34! is also automatically satisfied with van
ishing ak for the above mentioned nonsymmetric operato
In this limit, it is therefore useless to include nonsymmet
operators in the SR~34!.

Finally, it is interesting that in this important limitM
→`, within the assumption that we can neglect the fluct
tions ofak andŌe f f

k , the SR depends only on the propagat
statescn

e f f(x) andcn(x). In fact given the statecn(x) and
the FN onecn

e f f(x), then the statecn8(x) after the SR will be

cn8~x!5CF11(
k

ak~Ox
k2Ōe f f

k !Gcn
e f f~x!

~36!

cn
e f f8~x!5ucn8~x!u

where now theak are uniquely determined by the condition
~33!, whereas the normalization constant C

5(xcn(x)/(xcn
e f f(x), and, finally, cn

e f f8 replace the FN
propagated statecn

e f f after the SR~due to the condition
n

s-

s

by

-
f

g

h

r

.

-
d

wj
e f f85uwj8u). In this limit the dynamics described by the S

constraints is therefore perfectly defined and meaning
even in an exact calculation without the Monte Carlo sa
pling.

The way the computed results depend on the numbe
walkers is shown in Fig. 1, as a function of the number
correcting factors. As shown in Ref. 8 these correcting f
tors allow to eliminate the bias due to the finite population
walkers in the case there is no sign problem. In this ca
instead the finite population bias cannot be eliminated e
by an infinite number of factors and a properly large num
M of walkers has to be taken for unbiased simulations.
fact for M→` the fluctuations of theGn

L factors are bounded
by the central limit theorem byO(1/AM ). Therefore, for
givenL and large enoughM, they do not play any role in the
average quantities~28!.

As it is evident for large number of walkers (M→`) the
correcting factors do not play any role and the estimate w
minimum statistical error is obtained by simply ignoring th
correcting factors. This is actually a common approach
GFMC, to consider a large number of walkers so that
bias of the finite walker population becomes negligible, a
typically decreasing as 1/M ~see, e.g., Fig. 2!. However from
the picture it is also evident that, for large enoughM, the
predicted results obtained by including or by neglecting
correcting factors are both consistent. The convergenc
the M→` limit is however faster for the first method. Thu
the inclusion of the correcting factorsGn

L in Eq. ~28!, though
increasing the error bars, may be useful to reach theM→`
limit with a smaller number of walkers. The fact that the tw
types of extrapolation to infiniteM –the one including the
correcting factors and the one neglecting them–converg
the same value~see Fig. 2! shows that the theoretical limi
when Eq.~36! holds can be reached with a reasonable nu
ber of walkers, much smaller than the dimension of the H
bert space.

The other parameter affecting the accuracy of the SR
proach is the imaginary time distanceDt between two con-
secutive SR. It is then natural to ask whether by increas
the frequency of the reconfigurations, one reaches a w
defined dynamical limit forDt→0. This is important since

FIG. 1. Dependence on the numberL of correcting factors of the
estimated ground state energy per site forN564 andJ250.5 ob-
tained with the GFMCSR technique (Dt50.01) withM5200 ~tri-
angles!, 1500 ~squares!, and 10000~circles!. The GFMCSR tech-
nique is applied using in the SR the energy, allSz(q), the spin
square, and the order parameterm†2.
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due to the sign problem, for large system sizeN the time
intervalDt hasto be decreased at least by a factor invers
proportional toN, because the average walker sign vanis
exponentially;e2Dst with an exponentDs, which diverges
with N. Different calculations, performed for different size
can be compared only when the finiteDt error ~the differ-
ence betweenDt→0 and finiteDt) is negligible.

As shown in Fig. 3, whenever the simulation is stable
Dt→0, the limit Dt→0 can be reached with a linear e
trapolation. This property can be easily understood sinc
the limit of a large number of walkers, the variation of th
average correlation functions Eq.~28! both for the FN dy-
namics and the exact dynamics in a time interval betw
two consecutive SR differ clearly byO(Dt).

FIG. 2. Ground state energy per site forJ250.5 obtained for
different clusters and different number of walkers. Empty dots
data obtained with zero correcting factors while full dots refer
converged values inL. The GFMCSR technique is applied using
the SR only the Hamiltonian (p51).

FIG. 3. Dependence of the ground state energy per site on
imaginary time stepDt obtained forJ250.5 andN536 with the
GFMCSR technique by using in the SR the energy (p51, full
dots!, all Sz(q), the spin square and the order parameterm†2 (p
511, empty dots!. The number of walkers was fixed toM
510000, so that the finite-M bias can be neglected on this sca
The lower horizontal axis coincides with the exact diagonalizat
result.
y
s

r

in

n

In order to show more clearly how the method is worki
and systematically correcting the FN we have implemente
slightly different but more straightforward ‘‘release node
technique.14 We first apply the standard FN@with g50, see
Eq. ~13!# for a given number of walkersM and for long
simulation time. We store theM-walkers configurations, af-
ter some equilibration at time interval large enough to all
uncorrelated and independent samples of the FN gro
state. In a second step we recover each of theseM-walker
configurations and apply GFMCSR for a fixed imagina
time t, so that we can see how the energy expectation va
evolves from the FN to a more accurate determination. Ty
cally one obtains a reasonable behavior for these curves
always coincides with the exact dynamics in the initial p
where an exact sampling of the sign is possible. Howev
for large imaginary time, exceedingly smallDt and large
number of walkers, some instability may occur leading
results clearly off, as shown in Fig. 4. In this case, the ins
bility is due to the fact that the correlation functionsSz(q)
51/N2( i , jSi

zSj
zeiq( i 2 j ) which we have used in the SR (p

59),10 introduce some uncontrolled fluctuations for the m
mentumQ5(p,p) relevant for the antiferromagnetic orde
parameter. If we include in the SR technique also the s
isotropic operator corresponding to the order parame
m†251/N2( i , jSW i•SW je

iQ( i 2 j ) and the total spin square (p
511) this instability disappears~see, Fig. 4, stable results
not shown in the picture, are obtained even without the to
spin square, i.e., withp510). This is a reasonable effec
since the order parameter has important fluctuations in
spin directions.

IX. CONCLUSIONS

In this paper, we have tried to describe in detail a recen
proposed technique, the Green function Monte Carlo w
Stochastic Reconfiguration~GFMCSR!, that allows to work
out the ground state energy and related mixed average
relation functions within a controlled accuracy even for mo
els where the conventional Quantum Monte Carlo techni
cannot be used because of the well known sign problem

This method is rather general: in principle, convergenc
achieved within an arbitrary accuracy if a sufficiently lar
numberp of correlation functions are constrained to be eq
before and after the SR, the basic statistical step use

e

he

n

FIG. 4. Stable (p59, upper curve! and unstable (p511, lower
curve! imaginary time evolution of the GFMCSR estimates of t
ground-energy per site forJ250.5 and theN536 cluster. The hori-
zontal line indicates the exact result.
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TABLE I. Variational estimate~VMC! and mixed averages~FN, SR, and Exact! of the ground energy pe
site e05^H&/N, the total spin square and the order parameter~defined as in Ref. 15! for the triangular
Heisenberg antiferromagnet for various system sizes. SR data are obtained using the short-range co
functions generated byH (p52) andH2 (p57) reported in Ref. 15. All the values reported in this table a
obtained with large enoughM and 1/Dt, practically converged in the limit ofDt→0 andM→`. Exact
results are obtained using Lanczos technique.

N VMC FN SR(p52) SR(p57) Exact

e0 12 20.5981 20.6083(1) 20.6085(1) 20.6105(1) 20.6103
36 20.5396 20.5469(1) 20.5534(1) 20.5581(1) 20.5604
48 20.5366(1) 20.5426(1) 20.5495(1) 20.5541(1)

108 20.5333(1) 20.5387(1) 20.5453(1) 20.5482(1)

Stot
2 12 0.235 0.0111~2! 0.006~4! 20.002(4) 0.00

36 1.71 1.20~1! 0.65~1! 0.02~1! 0.00
48 2.55~1! 2.12~2! 1.44~1! 0.23~3! 0.00

108 6.36~4! 5.66~3! 4.35~4! 2.7~1! 0.00

m†2 12 0.9241 0.9286~1! 0.9210~2! 0.9132~6! 0.9109
36 0.7791 0.7701~4! 0.7659~2! 0.7512~3! 0.7394
48 0.7496~3! 0.7243~5! 0.7177~2! 0.7080~5!

108 0.6338~7! 0.6182~4! 0.6040~3! 0.5836~5!
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stabilize the sign problem instability. However, this is only
theoretical limit because the number of correlation functio
p required to obtain the exact result scales exponentially w
the system size, yielding a computational effort similar to
exact diagonalization methods.

In order to minimize the numberp of correlation func-
tions used in the SR, one is limited to use an empirical
proach, based on physical intuition, and/or by compari
with exact results obtained for small sizes with the ex
diagonalization technique. Typically, the fundamental ing
dient that we have found to be important for strongly cor
lated Hamiltonians is the ‘‘locality.’’ The most useful corre
lation functions are the short-ranged ones appearing in
HamiltonianH. A successful example is the application
the method to the Heisenberg model on the triangu
lattice15 where a remarkable accuracy is obtained by incl
ing also the short-range correlation functions generated
the application of the square of the Hamiltonian. Table
reports all the values of the ground state energy per site
total spin square and the antiferromagnetic order param
m†2 obtained with VMC, FN and GFMCSR~for two differ-
ent p’s!, up to N5108. However, the method of increasin
systematicallyp, by including in the SR the short-range co
relation functions generated byH,H2

•••, does not seem
general enough. For instance, it does not work for theJ1
2J2 Heisenberg model where the inclusion in the SR E
~33! of long-range operators, such as the spin-spin corr
tion function Si

zSj
z at large distanceu i 2 j u, is crucial to im-

prove the accuracy of the method, whereas the short ra
ones generated byH2 do not give any significant improve
ment.

Similarly to FN, the GFMCSR turns out to be siz
consistent, in the sense that at fixedp the average correlation
functions can be sizeably improved with respect to the va
tional guess,even in the thermodynamic limit~see Fig. 5!.
This is a non trivial property because, whenever there is s
problem, it is basically impossible to improve the best var
s
h
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tional FN guess by the conventional ‘‘release node’’14 since,
for large sizes the variances become untractable even f
very short imaginary time propagation.

This kind of size consistency is a very important prope
of the present algorithm because the stability of the aver
sign at fixedp allows apolynomialcomplexity of the algo-
rithm as a function of the system size. The algorithm, ho
ever, is typically a large factor (.100) more expensive tha
the standard FN as far as the computational time is c
cerned, for a given statistical error on correlation function

Until now the method has been extended rather succ
fully to several models: the mentionedJ12J2 and triangular
lattice Heisenberg models, thet2J model,16 and the Hub-
bard model, where preliminary results17 show that a similar
improvement of the standard FN can also be obtained. In
latter case it is worth mentioning that a different approa
the Constrained Path Monte Carlo18 ~CPMC! also represents
a very good remedy for the sign problem disease at leas
intermediate coupling (U/t<8). On the other hand, differen
schemes to get rid of the sign problem for continuum s
tems were previously proposed and successfully applie
small electron systems.19

FIG. 5. Finite size scaling of the GS energy per site forJ2

50.5 obtained with the FN and GFMCSR technique applied rec
figuring the Hamiltonian (p51).
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Although the GFMCSR is far from being the definite s
lution to the sign problem in the Monte Carlo simulation,
certainly represents an interesting tool to alleviate this ins
bility even for large system sizes. Its extension to continu
systems, and also to CPMC, is indeed straightforward, e
though, in these cases, crossing the nodal surface in a v
tional way ~see Appendix A! is not possible at present.
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APPENDIX A: PROOF OF THE UPPER BOUND

Here we follow the paper13 to prove rigorously the uppe
bound property of the ground state energy forHe f f. We want
to show that the prescription given in Eqs.~13! and~14! for
He f f leads to an upper bound for the ground state energy
H. When importance sampling is used it is important
change slightly the definition of the sign-flip term as in E
~15!:

Vsf~x!5 (
$cG(x8)Hx8,x /cG(x).0, x8Þx%

cG~x8!Hx8,x /cG~x!.

~A1!

We now takeany state

uc&5(
x

c~x!ux&, ~A2!

and we compare its energy with respect toH and toHe f f:

DE5^cu~He f f2H !uc&. ~A3!

DE can be written explicitly in terms of the matrix ele
ments ofH, using the definitions given in Eqs.~13!, ~14!, and
~A1!

DE5~11g!(
x

c~x!* F(
x8

sf

Hx,x8

cG~x8!

cG~x!
c~x!

2(
x8

sf

Hx,x8c~x8!G , ~A4!

where the notations f indicates conventionally the summa
tion over the off-diagonal elements such th
cG(x)Hx,x8 /cG(x8).0. In this double summation each pa
of configurationsx and x8 occurs twice. We combine thes
terms and rewrite Eq.~A4! as a summation over pairs:

DE5~11g! (
(x,x8)

sf

Hx,x8F uc~x!u2
cG~x8!

cG~x!
1uc~x8!u2

cG~x!

cG~x8!

2c~x!* c~x8!2c~x8!* c~x!G . ~A5!
-

n
ia-

.
ro,

of

.

t

Denoting bysH(x,x8) the sign of the matrix elementHx,x8 ,
and using the fact that for all terms in this summation t
condition cG(x8)Hx8,xcG(x).0 is satisfied, we can finally
write DE as

DE5~11g! (
(x,x8)

sf

uHx,x8uUc~x!AUcG~x8!

cG~x!
U

2sH~x,x8!c~x8!AU cG~x!

cG~x8!
UU2

. ~A6!

Obviously,DE is positive for any wave functionc. Thus the
ground-state energy ofHe f f is an upper bound for the
ground-state energy of the original HamiltonianH.

Now the GFMC method can calculate the exact grou
state energyE0

e f f and wave functionce f f of He f f, without
any sign problem. Hence,E0

e f f>^ce f fuHuce f f&>E0, where
the second inequality follows from the usual variational pr
ciple. We conclude therefore that the FN energy is an up
bound to the true ground state energy. One can easily ve
that ^cGuHucG&5^cGuHe f fucG&, and thus one can be sur
that the GFMC procedure improves on the energy of
guiding wave function:E0

e f f<^cGuHe f fucG&5^cGuHucG&.
Note that the standard lattice FN approach13 is obtained

for the particular parameterg50.

APPENDIX B: FORMAL PROOF
OF THE GFMCSR CONDITIONS

As stated in Sec. VI the SR conditions~33! read

(
x8,x

Ōx8,x
k cn8~x!5(

x8,x

Ōx8,x
k cn~x!, ~B1!

for k51, . . . ,p, with the normalization one(xcn8(x)
5(xcn(x).

The wave functioncn8(x) after the SR conditions define
by Eq. ~25! can be explicitly written in terms of the origina
walker probability distribution. To this purpose, we sing
out in the definition ofcn8(x)

cn8~x!5E @dw8#(
x8

Pn8~w8,x8!
( jdx,x

j8
wj8

M
, ~B2!

a termk in the above summation overj which gives an ad-
ditive contribution tocn8 , namelycn851/M(k$cn8%k with

$cn8~x!%k5E @dw8#(
x8

E @dw#

3(
x

X~w8,x8;w,x!Pn~w,x!dx,x
k8
wk8 ,

~B3!

where in the above equation we have substituted the de
tion of P8 in terms ofP given by Eqs.~24! and ~25!. In the
latter equation it is easy to integrate over all variab

wj8 ,wj
e f f8 ,xj8 for j Þk using that the kernelX is particularly

simple as discussed in Sec. VI. Then, the remaining th

integrals and summations overwk8 ,wk
e f f8 ,xk8 can be easily
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performed using the simpled functions that appear in th
kernelX and the definition ofb5( j pxj

/( j upxj
u, so that one

easily obtains

$cn8~x!%k5E @dw#(
x

Pn~w,x!
( jwj

M
sgnpx

( j upxj
udx,xj

( j pxj

.

~B4!

We can replace in general sgnpx( j upxj
udx,xj

/( j pxj

5( j pxj
dx,xj

/( j pxj
even when, occasionally, more config

rations satisfyxj5x.20 Thus, we obtain a closed expressio
for cn8(x) after the simple summation on the indexk:

cn8~x!5E @dw#(
x

Pn~w,x!S ( jwj

M D ( j pxj
dx,xj

( j pxj

. ~B5!

Then the normalization condition (xcn8(x)
5*@dw#(xPn(w,x)(( jwj /M )5(xcn(x) easily follows.
On the other hand, the left-hand side of Eq.~33! can be also
computed easily, yielding

(
x8,x

Ōx8,x
k cn8~x!5E @dw#(

x
Pn~w,x!S ( jwj

M D ( j pxj
Oxj

k

( j pxj

,

~B6!

whereOxj

k 5(x8Ōx8,xj
is the mixed estimator of the operato

Ok.
Finally, by substituting the condition~34! into the previ-

ous equation, one obtains

(
x8,x

Ōx8,x
k cn8~x!5E @dw#(

x
Pn~w,x!

( jwjOxj

k

M

5(
x8,x

Ōx8,x
k cn~x!, ~B7!

which proves the statement at the beginning of this sect

APPENDIX C: PROOF OF EXISTENCE
AND UNIQUENESS OF SOLUTION

FOR THE RECONFIGURATION

In this appendix, we prove that given thep11 SR con-
ditions ~34! the elements of the tablepxj

are uniquely deter-

mined for each walker configuration (w,x).
We define here the quantity

v j
k5~Oxj

k 2Ōf
k!, ~C1!

for each configurationj, where Ōf
k5( jwj

fOxj

k /( jwj
f is the

average value over the reference weights,wj
f , of the operator

considered, labeled by the numberk. The reference weights
wj

f are restricted to be strictly positive but can be in gene
arbitrary functions of all the FN weights$wj

e f f% the exact
weights$wj% and the configurations$xj%. It is easy to show
that, in order that

pxj
5wj

f S 11(
k

akv j
kD ~C2!
.

l

allows to satisfy the SR conditions~33!, it is sufficient that
ak are determined by the simple linear equation

(
k8

sk,k8ak85
( jwjv j

k

( jwj
, ~C3!

where

sk,k85
( jwj

fv j
kv j

k8

( jwj
f

~C4!

is the covariance matrix of the operatorsOk over the refer-
ence weightswj

f . The solution to Eq.~C3! is possible if the
determinant ofsk,k8 is non-vanishing. Sinces represents an
overlap matrix defined with a nonsingular scalar prod

^vkuvk8&5( jwj
fv j

kv j
k8/( jwj

f as wj
f are positive, its determi-

nant is always nonzero provided the vectorsvk are linearly
independent. Thus, in the latter case, the solution to Eq.~C3!
exists and is unique.

On the other hand suppose that among thep vectorsvk

only p8,p are linearly independent. Thus, the remainingp
2p8 vectors can be written as linear combination ofp8 lin-
early independent ones~henceforth we assume that these li
early independent vectors are labeled by the consecutive
dicesk51, . . . ,p8)

v j
k85 (

k51

p8

xk
k8v j

k , ~C5!

for k8.p8, where xk
k8 are suitable coefficients. The sam

previous considerations allow to satisfy the firstp8 SR con-
ditions as for Eq.~C3! a unique solution exists if we restric
all the sums fork, k<p8, andpxj

is determined only by the

first p8 linearly independent vectors in Eq.~C2!. With the
determinedpxj

it is obvious that

( j pxj
v j

k

( j pxj

5
( jwjv j

k

( jwj
~C6!

is verified fork51, . . . ,p8.
On the other hand we can easily show that all the rema

ing SR conditions~C6! for k8.p8 are identically satisfied. In
fact, in this case the LHS of Eq.~C6! can be manipulated a
follows, using definition~C5!

( j pxj
v j

k8

( j pxj

5 (
k51

p8

xk
k8S ( jv j

kpxj

( j pxj

D
5 (

k51

p8

xk
k8S ( jv j

kwj

( jwj
D

5
( jv j

k8wj

( jwj
, ~C7!

where in the intermediate steps we have used Eq. C6 fok
<p8. Thus, the SR conditions determine uniquelypxj

in any
case and this conclude the important statement of this
pendix.
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1. Remark

With the above definitions it is also possible to show th
pxj

remains unchanged for any linear transformation of
operator set. Namely, suppose we consider the new oper

Õk85(
k

Lk8,kO
k1bk8 ~C8!

in the SR conditions, where the real matrixL is assumed to
have nonvanishing determinant. Within this assumption i
simple to show thatpxj

will remain unchanged.
In fact, the new set of operators will define a new cov

riance matrix between the new vectors

ṽ j
k85(

k
Lk8,kv j

k , ~C9!

i.e., ṽ5Lv, s̃5LsLT, whereLT is the transposed ofL and
the set of new equations

(
k8

s̃k,k8ãk85
( jwj ṽ j

k

( jwj

is obviously satisfied by

ã5~L21!Ta, ~C10!

wherea is the solution of the SR conditions before the tran
formation ~C8!. Whenever the numberp8 of linearly inde-
pendentvk is less thanp, also the number of linearly inde
pendentṽk will be p8 as L is nonsingular. The solutionsa
andã, as described previously, refer therefore to the firstp8

components, and all the matrix involved, such asL̃ ands̃ are
in this case restricted to this subspace.

Then, by Eq.~C10! and Eq.~C9!, it easily follows that the
new coefficients p̃xj

5wj
f(11(kãkṽ j

k)5wj
f(11(kakv j

k)

5pxj
, which finally proves the statement of this remark.

2. Optimization of the weights

The definition of the weightspxj
that satisfy the SR con

dition ~33! is highly arbitrary because as we have mention
before the probabilitiesPn andPn8 do not uniquely determine
the quantum statescn andcn8 that are subject to the cond
tions ~33!. In this sense there may be different definitions
the weightspxj

that may behave differently at finitep with
less or more accuracy. Though Eqs.~33! are equally satisfied
for different choices of the coefficientspxj

the two statescn

andcn8 may be much closer~less bias! for an optimal choice.
The optimal choice that minimizes the distanceucn2cn8u, at
fixed numberp of correlation functions included in the SR
has not probably been found yet. We have attempted sev
choices for the reference weightswj

f of Eq. ~C2! but until
now no significant improvement of the simplest FN one10

has been obtained.

APPENDIX D: THE LIMIT L˜`

FOR THE POWER METHOD

The constantL, which defines the Green functionGx8,x
5Ldx8,x2Hx8,x and the FN oneGe f f ~12! has to be taken
large enough to determine that all the diagonal element
t
e
ors

s

-

-

d

f

ral

of

Ge f f are non-negative~by definition the off-diagonal ones o
Ge f f are always non-negative!. This requirement often deter
mines a very large constant shift, which increases with lar
size and is not knowna priori. The trouble in the simulation
may be quite tedious, as if for the chosenL a negative di-
agonal element is found forGe f f, one needs to increaseL
and start again with a completely new simulation. The w
out is to work with exceedingly largeL, but this may slow
down the efficiency of the algorithm as in the stochastic m
trix px8,x the probability to remain in the same configuratio
pd may become very close to one

pd5
L2Hx,x2~11g!Vsf~x!

L2Ex
, ~D1!

whereVsf(x) is given in Eq.~15! andEx is the local energy
Eq. ~5! that do not depend onL given the configurationx.

Following Ref. 7 the problem of working with largeL
can be easily solved with no loss of efficiency. We rep
this simple idea applied to our particular algorithm at fix
number of walkers. IfL is large it is possible to take a larg
value ofkp ~of orderL) iterations between two consecutiv
reconfigurations, because in most iterations the configura
x is not changed. The idea is that one can determinea priori,
given pd , what is the probabilityt(k) to makek diagonal
moves before the first acceptance of a new configura
with x8Þx. This is given by t(k)5pd

k(12pd) for k

50, . . . ,nl21 and t(nl)5pd
nl if no off-diagonal moves are

accepted during thenl trials that are left to complete the loo
without reconfigurations.

It is a simple exercise to show that, in order to sam
t(k) one needs one random number 0,j,1, so that the
stochastic integer numberk can be computed by the simpl
formula

k5minS nl ,F ln j

ln pd
G D , ~D2!

where the brackets indicate the integer part. During thekp
iterations one can iteratively apply this formula by boo
keeping the number of iterationsnl that are left to complete
the loop without reconfigurations. At the first iterationnl
5kp , then k is extracted using Eq.~D2!, and the weights
(w,we f f) of the walker are updated according tok diagonal
moves and ifk,nl a new configuration is extracted at ra
dom according to the off-diagonal matrix elements ofpx8,x .
The weights are correspondingly updated for this o
diagonal move, and finally, ifk,nl , nl is changed tonl
2k21, so that one can continue to use Eq.~D2! until all the
kp steps are executed for each walker.

The interesting thing of this method is that it can
readily generalized forL→` by increasingkp with L,
namely kp5@LDt#, whereDt represents now exactly th
imaginary time difference between two consecutive rec
figurations when the exact propagatore2HDt or e2He f fDt is
applied statistically.
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